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Reduction Formula for Fermion Loops and Density
Correlations of the 1D Fermi Gas
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Fermion N-loops with an arbitrary number of density vertices N>d+1 in d
spatial dimensions can be expressed as a linear combination of (d+1)-loops
with coefficients that are rational functions of external momentum and energy
variables. A theorem on symmetrized products then implies that divergences of
single loops for low energy and small momenta cancel each other when loops
with permuted external variables are summed. We apply these results to the
one-dimensional Fermi gas, where an explicit formula for arbitrary N-loops can
be derived. The symmetrized N-loop, which describes the dynamical N-point
density correlations of the 1D Fermi gas, does not diverge for low energies and
small momenta. We derive the precise scaling behavior of the symmetrized
N-loop in various important infrared limits.

KEY WORDS: Fermi systems; Feynman amplitudes; density correlations;
surface fluctuations.

1. INTRODUCTION

The properties of fermion loops with density vertices (see Fig. 1) play a role
in the theory of Fermi systems and various other problems in statistical
mechanics. Symmetrized loops, obtained by summing all permutations of
the N external energy-momentum variables of a single N-loop, describe
dynamical N-point density correlations of a (non-interacting) Fermi gas.
Single loops have no direct physical meaning (for N>2), but contribute as
subdiagrams of Feynman diagrams in the perturbation expansion of inter-
acting Fermi systems. Symmetrized loops appear as integral kernels in
effective actions for interacting Fermi systems, where fermionic degrees of
freedom have been eliminated in favor of collective density fluctuations.(1)
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The behavior of symmetrized loops for small energy and momentum
variables is particularly important for Fermi systems with long-range inter-
actions, whose Fourier transform is singular for small energy and momen-
tum transfers.(2, 3)

Besides their relevance for interacting electron systems and other fer-
mionic systems in nature, the theory of Fermi systems has also a bearing on
various problems in classical statistical mechanics, which can be mapped to
an effective Fermi system (gas or interacting). For example, the statistical
mechanics of directed lines in two dimensions can be mapped to the quan-
tum mechanics of fermions in one spatial dimension.(4) This mapping has
been exploited extensively to study fluctuations of crystal surfaces.(5, 6)

The 2-loop, corresponding to the 2-point density correlation function
has been computed long ago in one, two, and three dimensions.(7)

Recently, Feldman et al.(8) have obtained an exact expression for the
N-loop with arbitrary energy and momentum variables in two dimensions.
We have evaluated that expression explicitly and analyzed the small
energy-momentum limit of the symmetrized loops, showing in particular
that infrared divergencies of single loops cancel completely in the sum over
permutations.(9)

Most recently, Wagner(10) has published a reduction formula for fer-
mion loops in the static case, where all energy variables are set zero. This
formula reduces the N-loop for a d-dimensional Fermi system to a linear
combination of (d+1)-loops, with coefficients that are rational functions of
the momenta. In this work we point out that Wagner's formula and deriva-
tion can be easily extended to the case of finite energy variables (Section 3).
In the two-dimensional case, the possibility of such an extension is evident
from the exact expression for N-loops.(8) The small energy-momentum
behavior of symmetrized N-loops can be analyzed by applying a theorem on
symmetrized products derived in our work on two-dimensional systems, (9)

which we formulate for the general d-dimensional case in Section 4. We apply
the reduction formula to a one-dimensional system, where the N-loop can be
expressed in terms the 2-loop, which is very easy to compute (Section 5).
We finally compute the infrared scaling behavior of symmetrized N-loops in
a one-dimensional Fermi system.

2. LOOPS

The amplitude of the N-loop with density vertices, represented by the
Feynman diagram in Fig. 1, is given by

6N(q1 ,..., qN)=IN( p1 ,..., pN)=|
d dk

(2?)d |
dk0

2?
`
N

j=1

G0(k& pj ) (1)
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Fig. 1. The N-loop with its energy-momentum labels.

at temperature zero. Here k=(k0 , k), qj=(qj0 , qj ), and pj=( pj0 , pj ) are
(d+1)-dimensional energy-momentum vectors. We use natural units, i.e.
�=1. The variables qj and pj are related by the linear transformation

qj= pj+1& pj , j=1,..., N (2)

where pN+1#p1 . Energy and momentum conservation at all vertices yields
the restriction q1+ } } } +qN=0. The variables q1 ,..., qN fix p1 ,..., pN only
up to a constant shift pj [ pj+ p. Setting p1=0, one gets

p2=q1

p3=q1+q2

b

pN=q1+q2+ } } } +qN&1 (3)

We use the imaginary time representation, with a non-interacting
propagator

G0(k)=
1

ik0&(=k&+)
(4)

where =k is the dispersion relation and + the chemical potential of the
system. For a continuum (not lattice) Fermi system the dispersion relation
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is =k=k2�2m, where m is the fermion mass. The k0 -integral in Eq. (1) can
be easily carried out using the residue theorem; one obtains(8)

IN( p1 ,..., pn)= :
N

i=1
|

|k&pi |<kF

d dk
(2?)d \ `

n

j=1
j{i

f ij (k)+
&1

(5)

where fij (k)=i( pi0& pj0)+=k&pi
&=k&pj

.
The 2-loop 62(q, &q)#6(q) is known as polarization insertion or

particle-hole bubble, and has a direct physical meaning: 6(q) is the
dynamical density-density correlation function of a non-interacting Fermi
system.(11) For N>2, the N-loop is not a physical quantity, but the sym-
metrized N-loop

6 S
N (q1 ,..., qN)=S6N (q1 ,..., qN)=

1
N !

:
P

6N(qP1 ,..., qPN) (6)

where the symmetrization operator S imposes summation over all per-
mutations of q1 ,..., qN , is proportional to the (connected) dynamical
N-point density correlation function:

(\(q1),..., \(qN)) con=(&1)N&1 (N&1)! 6 S
N (q1 ,..., qN) (7)

Here \(q) is the Fourier transform of the particle density operator. Equa-
tion (7) is easily verified by applying Wick's theorem.(11) Note that Wick's
theorem yields a sum of (N&1)! distinct loops with non-equivalent per-
mutations of q1 ,..., qN , while the sum in Eq. (6) includes cyclic permuta-
tions which produce N equivalent copies of each loop.

3. REDUCTION FORMULA

We now state the reduction formula that reduces the N-loop for a
d-dimensional system with N>d+1 to a linear combination of (d+1)-
loops with coefficients that are explicitly computable rational functions of
momentum and energy variables. This formula is a straightforward
generalization of a result derived recently by Wagner(10) for the static case
pj0=0.

Let p1 ,..., pN be such that for each tupel of integers j=( j1 ,..., jd+1)
with 1� j1< } } } < jd+1�N, the complex d-dimensional vectors dj deter-
mined by the linear equations

fj1 jr
(dj)=i( pj1 0& pjr0)+

1
2m

(p2
j1

&p2
jr

)+
1
m

(pjr
&pj1

) } dj=0 (8)
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for r=2,..., d+1 are well-defined and unique. Suppose that for n=1,..., N
with n{ j1 ,..., jd+1 the numbers

f j
n :=f jr n(d j)=i( pjr 0& pn0)+

1
2m

(p2
jr
&p2

n)+
1
m

(pn&pjr
) } dj (9)

are non-zero. Then

IN( p1 ,..., pN)= :
j1 ,..., jd+1

1� j1< } } } < jd+1�N

\ `
N

n=1
n{ j1 ,..., jd+1

1
f j

n+ Id+1( p j1
,..., pjd+1

) (10)

Note that the numbers fjr n(dj) with r=1,..., d+1 are all equal, as a conse-
quence of Eq. (8). The vector dj is uniquely defined if the vectors pjr

&pj1
,

where r=2,..., d+1, are linearly independent. The real part of dj is the
center of the uniquely defined circumscribing sphere through the points
pj1

,..., pjd+1
in d-dimensional euclidean space. In contrast to d j, the numbers

f j
n are invariant under a shift pj [ pj+ p and can thus be expressed in

terms of the variables q1 ,..., qN .
The proof of the above reduction formula, a simple generalization of

the proof given by Wagner(10) for the static case, is presented in the
Appendix.

4. SYMMETRIZED PRODUCTS

Symmetrized loops are obtained by summing over all permutations of
external energy-momentum variables q1 ,..., qN as in Eq. (6). Up to a trivial
constant, symmetrized N-loops are the connected N-point density correla-
tion functions of the Fermi gas. The behavior of these functions in the
infrared limit qj � 0 determines the long-distance (in space and time) den-
sity correlations, and is a crucial ingredient for power-counting of contribu-
tions to effective actions for collective density fluctuations. We will consider
two important scaling limits:

(i) small energy-momentum limit lim* � 0 6 S
N (*q1 ,..., *qN),

(ii) dynamical limit lim* � 0 6 S
N [(q10 , *q1),..., (qN0 , *qN)].

Single N-loops diverge generally (for almost all choices of q1 ,..., qN) as
*2&N in the small energy-momentum limit, which is what one would expect
from simple power-counting applied to the integral (1). A notable excep-
tion is the socalled static limit, where the momenta qj tend to zero after all
energy variables qj0 have vanished. In that case one obtains a unique finite
limit 6N � [(&1)N&1�(N&1)!][d N&2�d=N&2] D(=)| ==+ , where D(=) is the
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density of states.(12) In the following we will show that systematic cancella-
tions occur in the sum over permutations in the general small energy-
momentum limit and also in the dynamical limit.

The factor multiplying the (d+1)-loops in the reduction formula can
be written as

Fj := `
N

n=1
n{ j1 ,..., jd+1

1
f j

n

= `
d+1

r=1

F j
r (11)

where

F j
r={F j

r(qjr
, qjr+1 ,..., q jr+1&1)= `

jr+1&1

n= jr+1

1
f j

n

for jr+1> jr+1
(12)

1 for jr+1= jr+1

Here jd+2#j1 , i.e. for r=d+1 the index n runs from jd+1+1 to N and
then from 1 to j1&1. Note that F j

r depends also on differences of the
energy-momentum variables pj1

,..., pjd+1
, besides the explicitly written

arguments. As a product of Mr= jr+1& jr&1 factors ( f j
n)&1, F j

r diverges
as *&Mr in the small energy-momentum limit, since each f j

n vanishes
linearly. We define a symmetrized product

S j
r(k1 ,..., kMr+1)=

1
(Mr+1)!

:
P

F j
r(kP1 ,..., kP(Mr+1)) (13)

where all permutations of k1 ,..., kMr+1 are summed. According to the
following theorem, the symmetrized product S j

r can be expressed such that
the cancellations of singularities in the infrared limit become obvious.

Factorization Theorem. The symmetrized product S j
r can be

written as mMr�(Mr+1)! times a sum over fractions with numerators

(k_1
} k_$1

)(k_2
} k_$2

)(k_Mr
} k_$Mr

) (14)

where _i{_$i and Mr= jr+1& jr&1, and products of 2Mr functions f j as
denominators. The functions f j have the form

f j( p, p$)=i( p0& p$0)+
1

2m
(p2&p$2)+(p$&p) } dj (15)

where p= pjr
and p$= p jr

+( partial sum of k1 ,..., kMr+1). In each numer-
ator, each momentum variable k1 ,..., kMr+1 appears at least once as a
factor in one of the scalar products.
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For example, in the simplest case Mr=1 one obtains

F j
r(k1 , k2)+F j

r(k2 , k1)=
m(k1 } k2)

f j( pjr
, p jr

+k1) f j( p jr
, pjr

+k2)
(16)

The factorization theorem has been derived recently(9) in the context of
two-dimensional systems. The proof provides a concrete algorithm leading
to the factorized expression. Since the algorithm is actually independent of
the dimensionality of the system, we will not repeat the derivation here.

The infrared scaling behavior of S j
r follows directly:

(i) S j
r is finite (of order one) and real in the small energy-momentum

limit.

(ii) S j
r vanishes as *2Mr in the dynamical limit.

To see this, note that the functions f j( p, p$) vanish linearly in the small
energy-momentum limit, and are purely imaginary to leading order in *,
while they remain finite in the dynamical limit.

The symmetrized product is thus much smaller for small energy and
momentum variables than each single term, namely by a factor *Mr in the
small energy-momentum limit, and even by a factor *2Mr in the dynamical
limit. This result holds in any dimension d.

5. ONE-DIMENSIONAL SYSTEMS

We now apply the general results from Sections 3 and 4 to one-dimen-
sional systems, (13) where particularly simple expressions can be obtained.
We consider first single, then symmetrized loops.

A. Single Loops

In one dimension, the reduction formula (10) reduces N-loops to
linear combinations of 2-loops:

IN ( p1 ,..., pN)= :
j1 , j2

1� j1< j2�N

_ `
N

n=1
n{j1 , j2

1
f j

n& I2( pj1
, p j2

) (17)

where dj is given explicitly by

d j=
1
2

( pj1 1+ pj2 1)+im
pj10& pj20

p j11& pj21

(18)
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and

f j
n=&

1
2m

( pn1& pj11)( pn1& p j21)+i( p j10& pn0)+i( pn1& pj11)
pj10& p j20

pj11& pj2 1

(19)

Here pn1 and pjr 1 are the one-dimensional momentum components of the
energy-momentum vectors pn=( pn0 , pn1) and pjr

=( pjr 0 , pjr1), respectively.
The 2-loop can be computed very easily, the result being

I2( pj1
, p j2

)=
m
?

1
p j11& pj21

log }
kF&:j1 j2

kF+:j1 j2
} (20)

where

:j1 j2
=

1
2

( p j1 1& p j2 1)+im
pj1 0& pj20

pj11& pj2 1

(21)

We have thus obtained an explicit expression in terms of elementary func-
tions for N-loops in one dimension. One may easily perform an analytic
continuation to real (instead of imaginary) energy variables, ipj0 [ =j , in
the above expressions to analyze, for example, the non-linear dynamical
density response of the Fermi gas.

In the zero energy limit pj0 � 0 one obtains the simple result

lim
pj 0 � 0

j=1,..., N

IN ( p1 ,..., pN )= :
j1 , j2

1� h1< j2�N

_ `
N

n=1
n{ j1 , j2

&2m
( pn1&pj11)( pn1&pj21)&

_
m

?( pj11&p j21)
log }

2kF&( pj1 1&pj2 1)

2kF+( p j1 1&pj21) } (22)

Note that the above expression has a finite limit for pj1 � 0, although each
contribution to the sum diverges.

B. Symmetrized Loops

It is well known that for a linearized dispersion relation =k=
vF ( |k|&kF), as in the one-dimensional Luttinger model, the symmetrized
N-loop 6 S

N (q1 ,..., qN) vanishes identically for N>2 even for finite q j with
sufficiently small momenta qj1 .(14) We now analyze the infrared behavior of
symmetrized N-loops in a one-dimensional system with the usual quadratic
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dispersion relation. Symmetrizing the reduction formula, we can write sym-
metrized loops as

6 S
N (q1 ,..., qN)=S :

j1 , j2
1� j1< j2�N

S j
1S j

2I2( p j1 , pj2) (23)

where S is the symmetrization operator introduced in Section 2 and S j
1

and S j
2 are the symmetrized products defined in Section 4. Note that first

symmetrizing partially (with respect to a subset of variables, as in the
products S j

r) and then completely (by applying S) yields the same result
as symmetrizing everything just once.

We can now easily derive the scaling behavior of 6 S
N in the small

energy-momentum and dynamical limit, respectively. The 2-loop 6(q1)#
62(q1 , &q1)=I2(0, q1) tends to the finite value

6(*q1) � &
1

?vF

1
1+[q10 �(vF q11)]2 (24)

in the small energy-momentum limit and vanishes quadratically as

6(q10 , *q11) � &
vF

?
q2

11

q2
10

*2 (25)

in the dynamical limit, where vF=kF �m is the Fermi velocity. The same
behavior is found for the 2-loop with a linearized =k . Since S j

1 and S j
2 are

both finite in the small energy momentum limit, the symmetrized N-loop
remains finite, too:

6 S
N (*q1 ,..., *qN)=O(1) for * � 0 (26)

Only in the static case qj0=0 each single loop 6N has a finite limit for
qj1 � 0, while in general the above result is due to systematic cancellations
of infrared divergencies. In the dynamical limit the product S j

1 S j
2 vanishes

as *2M1+2M2 where M1+M2=N&2, such that

6 S
N[(q10 , *q11),..., (qN0 , *qN1)]=O(*2N&2) for * � 0 (27)

The same scaling behavior has been found previously for two-dimensional
systems.(9)

6. CONCLUSION

We have derived a formula that reduces the evaluation of fermion
loops with N density vertices in d dimensions to the computation of loops
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with only d+1 vertices. This was obtained by a straightforward extension
of a recent result by Wagner(10) for the zero energy limit to arbitrary
energy variables. Using a theorem about symmetrized products, we have
shown that infrared divergencies of single loops cancel to a large extent
when permutations of external energy-momentum variables are summed.
The symmetrized N-loop, which is proportional to the N-point density
correlation function of the Fermi gas, is thus generally much smaller in the
infrared limit than unsymmetrized loops. For one-dimensional systems, we
have obtained an explicit expression for arbitrary N-loops in terms of
elementary functions of the energy-momentum variables. We have shown
that symmetrized loops do not diverge for low energies and small
momenta. In the dynamical limit, where momenta scale to zero at fixed
energy variables, the symmetrized N-loop vanishes as the (2N&2)th power
of the scale parameter.

We finally outline some applications of our results.

Evaluation of Feynman diagrams. Analytical results for loops are of
course useful for computing Feynman diagrams containing fermion loops
as subdiagrams. The number of energy-momentum variables that remain to
be integrated (analytically or numerically) is thus reduced. In particular,
the mutual cancellation of contributions associated with different permuta-
tions of energy-momentum transfers entering a loop can be treated analyti-
cally, avoiding numerical ``minus-sign'' problems.

Effective actions. Effective actions for interacting Fermi systems,
where the fermionic degrees of freedom have been eliminated in favor of
collective density fluctuations, contain symmetrized N-loops as kernels.(1)

A good control of the infrared behavior of these kernels is essential for
assessing the relevance of non-Gaussian terms in the effective action, espe-
cially in the presence of long-range interactions. In one-dimensional
systems one can use our results to compute the scaling dimensions of
corrections to the leading low-energy behavior of Luttinger liquids(15) by
analyzing the non-quadratic corrections in the bosonized action.

Surface fluctuations. Some models of surface fluctuations lead to the
statistical mechanics of directed lines in two dimensions, which can be
mapped to the quantum mechanics of fermions in one spatial dimen-
sion.(5, 6) Most recently, Pra� hofer and Spohn(16) have shown that the prob-
ability distribution of height fluctuations in such models is Gaussian at
long distances on the surface. For this result it was enough to establish that
symmetrized N-loops in the associated Fermi system are less singular than
the naive power-counting estimate. Our result Eq. (26) yields the precise
scaling dimension of non-Gaussian terms, and implies in particular that
high order corrections vanish very rapidly at long distances.
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APPENDIX A. PROOF OF REDUCTION FORMULA

Following Wagner's(10) derivation for the static case, we prove the
reduction formula (10) by applying the following many-dimensional ver-
sion of Lagrange's interpolation formula:

Lemma 1. Suppose that 1�d+1<N and the (d+1)-dimensional
complex vectors a1 ,..., aN are such that aj1

,..., ajd+1
as well as (aj1

&an),...,
(ajd+1

&an) are linearly independent for pairwise different indices j1 ,..., jd+1 ,
n # [1,..., N ]. For j=( j1 ,..., jd+1) with 1� j1< } } } < jd+1�N determine
the complex (d+1)-dimensional vector zj by the system of linear equations
ajr

} zj=1 for r=1,..., d+1. Then each complex homogeneous polynomial
P(z0 , z) of degree N&(d+1) in the d+2 variables z0 , z=(z1 ,..., zd+1) can
be written as

P(z0 , z)= :
j1 ,..., jd+1

1� j1< } } } < jd+1�N

P(1, zj) `
N

n=1
n{ j1 ,..., jd+1

(z0&an } z) det(aj1
,..., a jd+1

)

det \ 1
an

1
aj1

} } }
} } }

1
ajd+1

+
(28)

where the vectors a1 ,..., aN enter the determinants as column vectors. For
a proof, see ref. 17.

We apply the above lemma to the polynomial P(z0 , z)=zN&(d+1)
1 and

an=\&i(k0& pn0)+!pn

(k&2pn)�- 2m + (29)

where !p=p2�(2m)&+. Since P(1, zj)=(z j
1)N&(d+1) and ajr

} zj=1 for
r=1,..., d+1, Cramer's rule yields

P(1, zj) `
N

n=1
n{ j1 ,..., jd+1

det(a j1
,..., a jd+1

)

= `
N

n=1
n{ j1 ,..., jd+1

z j
1 det(aj1

,..., ajd+1
)

= `
N

n=1
n{ j1 ,..., jd+1

det \
1 } } } 1

+k&2pj1

- 2m
} } }

k&2pjd+1

- 2m

= `
N

n=1
n{ j1 ,..., jd+1

(&- 2�m)d det(pj2
&pj1

,..., pjd+1
&pj1

) (30)
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In the last step we have subtracted the first column of the determinant from
all the others and then applied Laplace's theorem. We now evaluate the
denominator in (28),

1 1 } } } 1

D=det \&i(k0&pn0)+!pn
&i(k0&pj10)+!pj1

} } } &i(k0&p jd+10)+!pjd+1+(k&pn)�- 2m (k&pj1
)�- 2m } } } (k&p jd+1

)�- 2m

(31)

Subtracting the first column from all the others and applying Laplace's
theorem yields

D=det \
fj1n(0)

- 2�m (pn&p j1
)

} } }

} } }

f jd+1n(0)

- 2�m (pn&pjd+1
)+ (32)

Adding dj } (pn&pjr
)�m to the r th matrix element in the first row (adding

thus multiples of the other rows to the first one) one obtains

D=det \
f j1n(d j)

- 2�m (pn&p j1
)

} } }

} } }

f jd+1n(d j)

- 2�m (pn&pjd+1
)+

=(- 2�m)d f j
n det \ 1

pn&pj1

} } }
} } }

1
pn&pjd+1

+ (33)

Subtracting the first column from all others and applying Laplace's
theorem once again one obtains

D=(&- 2�m)d f j
n det(p j2

&pj1
,..., p jd+1

&pj1
) (34)

Equation (30) and Eq. (34) yield

P(1, zj) `
N

n=1
n{ j1 ,..., jd+1

det(aj1
,..., a jd+1

)

det \ 1
an

1
aj1

} } }
} } }

1
ajd+1

+
= `

N

n=1
n{ j1 ,..., jd+1

1
f j

n

(35)

We now set z0=0 and z=(1, k�- 2m), such that

z0&an } z=i(k0& pn0)&!k&pn
=G&1

0 (k& pn) (36)
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With this choice of variables the above lemma thus yields the algebraic
identity

1= :
j1 ,..., jd+1

1� j1< } } } < jd+1�N

`
N

n=1
n{ j1 ,..., jd+1

1
f j

n

G&1
0 (k&pn) (37)

Multiplying this equation with >N
j=1 G0(k&pj) and integrating over k one

finally obtains the reduction formula Eq. (10).
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